
HacktheBox
FROLiC WRiTEUP

HACKTHEBOX WRiTEUP  GiOViFAZi
HTB: CHRiSTOUCH

https://github.com/giovifazi
https://app.hackthebox.eu/profile/55980


Index

1 FOOTHOLD 3

2 USER PRiViLEGE ESCALATiON 7

3 ADMiN PRiViLEGE ESCALATiON 9

HACKTHEBOX WRiTEUP  GiOViFAZi
HTB: CHRiSTOUCH

https://github.com/giovifazi
https://app.hackthebox.eu/profile/55980


1 FOOTHOLD

Adding domain to etc hosts

Autorecon found some entries in the website on port 9999 (/dev /backup /admin …). Further investigation with dirb lead to the
discovery of a login:

Looking at the js source code the credentials were found:

HACKTHEBOX WRiTEUP  GiOViFAZi
HTB: CHRiSTOUCH

https://github.com/giovifazi
https://app.hackthebox.eu/profile/55980


Now begins the (useless) ctf nightmare:

HACKTHEBOX WRiTEUP  GiOViFAZi
HTB: CHRiSTOUCH

https://github.com/giovifazi
https://app.hackthebox.eu/profile/55980


password is password

endless suffering:

HACKTHEBOX WRiTEUP  GiOViFAZi
HTB: CHRiSTOUCH

https://github.com/giovifazi
https://app.hackthebox.eu/profile/55980


Apparently we got a password that may be used elsewhere:

Further enumeration with dirb in the /dev/ directory lead to the discovery of a playsms instance:

HACKTHEBOX WRiTEUP  GiOViFAZi
HTB: CHRiSTOUCH

https://github.com/giovifazi
https://app.hackthebox.eu/profile/55980


Login creds are admin:idkwhatispass

2 USER PRiViLEGE ESCALATiON

Can’t figure out the exact version, so I tried a few exploit and the preauth template injection worked:

It was possible to upload a php reverse shell into the server with the following commands:

HACKTHEBOX WRiTEUP  GiOViFAZi
HTB: CHRiSTOUCH

https://github.com/giovifazi
https://app.hackthebox.eu/profile/55980


HACKTHEBOX WRiTEUP  GiOViFAZi
HTB: CHRiSTOUCH

https://github.com/giovifazi
https://app.hackthebox.eu/profile/55980


3 ADMiN PRiViLEGE ESCALATiON

Enumerating the users home directories, it was found the .binary directory that contains a suid binary.

After tranferring the binary to the local machine, it was analyzed with ghidra, showing that is uses a strcpy on a 48 byte buffer:

HACKTHEBOX WRiTEUP  GiOViFAZi
HTB: CHRiSTOUCH

https://github.com/giovifazi
https://app.hackthebox.eu/profile/55980


After executing the binary with ldd, it was discovered that libc is always loaded in the same address:

Printing libc version in order to search for system and bin/sh offsets on libc.blukat.me:

HACKTHEBOX WRiTEUP  GiOViFAZi
HTB: CHRiSTOUCH

https://libc.blukat.me/
https://github.com/giovifazi
https://app.hackthebox.eu/profile/55980


Calculating absolute addresses:

HACKTHEBOX WRiTEUP  GiOViFAZi
HTB: CHRiSTOUCH

https://github.com/giovifazi
https://app.hackthebox.eu/profile/55980


Since I’m lazy and there’s no gdb installed on themachine, I “bruteforced” the overflow offset value (which it is around 50). In short
the buffer overflow will overwrite the return address with the address of the system function loaded in memory, afterwards the
bin/sh string address (also found in the libc) gets written and will be used as an argument for the function call. This results in the
execution of system(”/bin/sh”) that grants a root shell (since the binary uses setuid).

HACKTHEBOX WRiTEUP  GiOViFAZi
HTB: CHRiSTOUCH

https://github.com/giovifazi
https://app.hackthebox.eu/profile/55980

	Footholdgrayheight0.9pt
	User Privilege Escalationgrayheight0.9pt
	Admin Privilege Escalationgrayheight0.9pt

